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Addressing continuous variable bias in Tabular benchmarks

»  We selected 21 datasets after carefully reviewing more than 4,000 datasets including OpenML (3,953 datasets),
AMLB (71 datasets), and Grinsztajn et al.(22 datasets).

* Preprocessing. Datasets with more than 30% missing values were excluded. For the remaining datasets, columns
with more than 30% missing values were removed. Also, redundant categorical variables, which have only one
category, were removed.

* Variable types. In order to evaluate tabular models in a more real-world like environment, we selected datasets with
both continuous and categorical variables. Surprisingly, around 60% of the entire datasets did not satisfy this
condition.

* Data distribution. in this study, We assume that data samples are i.i.d. Hence, datasets with certain distributional
structure (sequential or temporal) were excluded. Also, we eliminated datasets with too simple distributions, which
can be easily predicted with high Accuracy by naive models. Artificially generated datasets were excluded as well.
Lastly, as this study focuses on classification tasks, datasets for regression tasks were not considered.

« Dataset size. Most previous studies did not evaluate their models with datasets of different sizes. For more
comprehensive evaluation, we selected datasets with different sizes: small-sized (~10,000 samples), medium-sized
(10,000~100,000), and large-sized (100,000~).

Tabular benchmarks



« Autolnt (Song et al., 2019)
» Designed for learning feature interactions automatically through self-attention layers. Primarily tested in
recommendation-like tasks, where categorical embeddings dominate.
*  NODE (Popov et al., 2020)
» Trains ensembles of differentiable oblivious decision trees, bridging the gap between tree methods and neural
nets. Evaluations have focused on a limited set of (mostly continuous) tabular benchmarks.
» TabTransformer (Huang et al., 2020)
> Uses Transformer layers to capture column-wise relationships, but largely treats all features in a uniform way.
Categorical variables are embedded; continuous variables typically pass through simple MLPs.
« TabNet (Arik and Pfister, 2021)
» Employs sequential attention to columns and learns feature selection in a differentiable way. However, it still
treats all feature types somewhat uniformly and may struggle with heavily imbalanced categorical data.
* FT-Transformer (Gorishniy et al., 2021)
» Adopts a Transformer-based encoder for tabular data, again applying similar transformations across both

categorical and continuous features. Shows good performance on certain benchmarks but often assumes well-

behaved or purely continuous inputs.
« TabPFN (Hollmann et al., 2023)

» A probabilistic approach that directly infers posterior predictive distributions for tabular classification. It shows
promise but has not been deeply tested on highly mixed or categorical-heavy datasets.

«  GRANDE (Marton et al., 2024)

» Focuses on ensembling multiple neural networks for tabular data, achieving robust predictions. Mostly tested
under fully supervised conditions and primarily on continuous or balanced scenarios(labels).

Related Works (Tabular DL Models)




* VIME (Yoon et al., 2020)

» One of the first to propose a semi-supervised approach for tabular data, employing a consistency-based loss.

Uses the same noise injection strategy across all features, potentially overlooking crucial differences between
categorical and continuous attributes.

 SCARF (Bahrietal., 2021)

> Introduces a self-supervised objective by corrupting a random subset of features and maximizing the agreement
between original and corrupted views. However, it does not distinguish between continuous and categorical
variables, and tested primarily on continuous-heavy datasets.

* SubTab (Ucar et al., 2021)

» Splits columns into multiple subsets and uses an autoencoder to reconstruct the data from partial subsets. Again,

the corruption does not adapt to different variable types, and evaluation data mostly contained continuous
features.

Common Shortcomings

+ Aprevalent theme is the lack of tailored handling for mixed-variable settings—continuous + categorical
features—in a unified framework.

« Many models are benchmarked on continuous-heavy data, which may not reflect real-world tabular
datasets containing complex categorical features and imbalances.

 Few methods explicitly address semi-supervised scenarios where labeled data is limited or noisy.

Related Works (Self-/Semi-Supervised Learning for Tabular Data)



GFTab (Geodesic Flow Kernel on Mixed-variable Tabular data)
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Figure 1 The proposed model (GKSMT) is a semi-supervised learning framework specifically designed for handling tabular data.

*  The model proposed in this study aims to obtain an invariant representation by considering both continuous and categorical variables
through a (1) corruption method and (2) geodesic kernel flow, reflecting the basic structure of the data from the corrupted representation.

»  This technique is particularly useful for dealing with diverse types of data, ensuring that the model can effectively learn from and represent
both numerical (continuous) and non-numerical (categorical) elements.

Methodology : Overview



We have N; labeld samples D; = {xi,yi}ivil c RM*1 and N, un-labeled samples D,, = {x‘}i\]:”1 c RM, where N, > Nj.
Here, x! € R is an example, y* € R is the label of x.

In this work, x* can be decomposed into continuous variable x>¢°™ € RMcont and categorical variable x>¢*t € RMcat,

Corruption method — continuous variable

Let PEo™t be the uniform distribution XSOt = {x LMt yicont g xconty \where x-°™ denotes the m-th coordinate of
xi,cont.

o xbeont = ySN(x¥°™) where VSN is Variable Selection Network.

Here, we define permutation matrix, P size d°t x dcont,

~icont _ i,cont _1\sicont
Xoope = AX +(1-1)x P

~tcont __ . q_ i,cont ci,cont ~i,cont _ [<«icont] ™ cont sl,cont  pcont
o Fpolt = (1-A)x + Axteontp Where £ = &™) . and 2,7 ~Py,

Methodology : Corruption method (continuous variable)
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«  We have N, labeld samples D; = {xl,yl}l,:l1 c R"** and N, un-labeled samples D,, = {x'}.* S R", where N, > N,.
«  Here, x* € RM is an example, y* € R is the label of x*.

« In this work, x* can be decomposed into continuous variable x>t € RMecont and categorical variable x>t € RMcat,

Feature corruption — Categorical variable
Letk = [kl, s koat]T be the mask vector where k,,,’s are independently sampled from over the set Z N [—S,,,, $;,, ]\ {0}

with equal probability. Where s,,, is size of the neighborhood at k,,,. We can find the size of neighborhood for which the
corruption rate is % greater for a categorical variable via Remark 1.

o ~cat _ t
xsof‘% =x“ + nhr(k)
~cat __ ..cat
* Xhard = X “*+ nhszl(k)

Notice that if the corrupted value fﬁ'cat falls outside the range of the variable, the mask k,, is set to zero.

Remark 3.1.: For a categorical variable with n > 2 categories, the minimum size of the neighbor-

hood s that achieves at least a corruption rate of r is given by [2n(1 —r) —1].

Methodology : Corruption method (categorical variable)



Number of categories = [3, 4, 3, 5]
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Corruption method (categorical variable)
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Figure 1 The proposed model (GKSMT) is a semi-supervised learning framework specifically designed for handling tabular data.
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Figure 1 The proposed model (GKSMT) is a semi-supervised learning framework specifically designed for handling tabular data.
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A.1. Construct Geodesic Flow

We use the notion of subspaces to incorporate a collection of features derived from both soft
and hard representation. To do this, we model the by low-dimensional subspace with basis P €
Rdlin XD .

DEF 1 (Grassmannian) Grassmannian G(D, d;;;,,), which is the collection of all D-dimensional
linear subspaces R%in*P is a smooth Riemannian manifold. Also, an element P of G(D, dy;;,)
can be specified by a basis. That is d;;;; X D matrix with orthogonal columns.

~cat =~ t
fenc scgft' ggfr’lc )
t ~ t
Bn = e (xﬁgrd' xﬁglr‘ld)

Geodesic Flow Kernel



DEF 2. (Geodesic flow) Let P and Py, denote the sets of basis vector for the subspaces
corresponding to the soft and hard representations, respectively. The geodesic flow between Py
and P}, denoted GF : € [0,1] - GF(m) € G(D, d;j;;;). Then we can rewrite the geodesic flow:

GR=[Py Rl g "Ly | = PRUATG) = RuUZE()
()

Here, the R;, € R%in*(d1in=D) ig the orthogonal complement of Py, that is R} P,=0, and the T
and X diagonal matrices. Also, The U; € RP*P and U, € RP~%in)*P are orthonormal
matrices.

DEF 3. (Geodesic Flow Kernel) Let z,=f o, (%55, £CRY) and zg = fone (RF2E 4, XR20E) are the
encoded representation, respectively. Then, the geodesic flow kernel is defined as :
1

zZnAzg = J (GF (m)"z,)T"(GF () Tz,) dm
0
Where 4 = [ GF(1)GF(n) "d.

Geodesic Flow Kernel



< Xp, Xp >= fol(GF(n)TzS)T(GF(n)Tzh) drm = zJ Az,

Notice 1 : that we can calculate A in closed-form. (A is a d by d psd.)
Notice 2 : A is the matrix that defines the manifold structure between
features of two vector.

xs 4 [GF(0)Tzg)..., GF(m) "z, ...}, GF(1) T z,]
xp, 4 [GF(0)Tz,)...,GF(m) Tz, ..}, GF(1) T z,]

More similar to hard GF(0) > GF(1) More similar to soft

b v b

Geodesic loss

) & L 1 stAzh
’ oss =1—
e %ﬁ_ . 1405 2 11147 2,

Geodesic Flow Kernel

Geodesic Flow
Example
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Figure 1 The proposed model (GKSMT) is a semi-supervised learning framework specifically designed for handling tabular data.

LgFTab = Lsim T B Lce

Methodology



Baseline model

Experiment setting

GFTab (Ours) GRANDE (ICLR, 2024)

SCARF (ICLR 2022 Spotlight) TabPFN  (ICLR 2023)
SubTab (NeurlPS 2021) XGBoost
VIME (NeurlIPS 2020) Caboost

For XGBoost and CatBoost, we optimized hyperparameters using Optuna, conducting 250
experiments for each model with a search space consistent with GRANDE. Deep learning
models used settings from their respective papers for finding hyper-parameters, while SCARF
and VIME had arbitrarily set ranges detailed in the appendix.

All experiments (GFTab and all baseline models) were repeated three times.

All the models were trained with labels for 10% and 20% of the entire data samples.
Additionally, there was an experiment conducted with 20% label noise introduced only in
the training data to assess the models' robustness to noisy labels.

Experiment Settings




Panel A. Datasets with more categorical variables

model Diabetes Insurance adult bank cme credit-approval credit-g
GFTab 0.3826 10.0139 0.4500 £0.0022 0.8023 £0.0070 0.7336 $0.0040 0.4625 +0.0215 0.6738 £0.0019 0.7433 £0.0424
GRANDE 0.3635 +0.0012 0.4225 40.0001 0.7596 40.0033 0.7017 40.0042 0.4306 40.0229 0.8521 4+0.0008 0.6570 £0.0224
TabPEN 0.2559 $0.0089 0.4312 £0.0001 0.7530 +0.0024 0.6102 £0.0047 0.4566 0.0027 0.8975 £0.0091 0.4802 £0.0409
SCARF 0.2335 4-0.0001 0.4312 40.0002 0.4157 40.0244 0.4699 4-0.0009 0.3479 40.0425 0.6993 +0.0518 0.4451 +0.0377
SubTab 0.2569 +0.0187 0.4312 £0.0001 0.7506 £0.0035 0.6626 $0.0049 0.5012 +0.0141 0.6728 £0.0202 0.6474 £0.0388
VIME 0.2611 40.0313 0.4314 4-0.0001 0.7369 4-0.0057 0.6932 1+-0.0179 0.4942 4+0.0336 0.7177 +0.1637 0.5397 +0.0891
XGBoost 0.3534 10.0002 0.4312 £0.0003 0.7344 £0.0006 0.5246 $0.0024 0.4540 £0.0213 0.8276 £0.0096 0.5968 +£0.0171
CatBoost 0.3552 4-0.0003 0.4312 +0.0001 0.7428 +0.0006 0.4844 40.0103 0.3694 £0.0430 0.8469 +0.0082 0.5590 £0.0310

model dresses-sales fars jasmine kick okcupid-stem online-shoppers shrutime
GFTab 0.4165 40.0057 0.6199 +0.0104 0.7775 +0.0041 0.4928 40.0044 0.4219 £+0.0195 0.7871 +0.0106 0.7088 +0.0025
GRANDE 0.4611 £0.0256 0.5600 £0.0122 0.7630 £0.0044 0.4654 1+0.0012 0.4412 +0.0117 0.7405 £0.0042 0.7355 £0.0034
TabPEN 0.3671 +0.0010 0.5247 +0.0104 0.7491 4-0.0036 0.4749 40.0010 0.3889 4-0.0019 0.7954 +0.0012 0.7130 £0.0069
SCARF 0.4694 10.0838 0.1314 £0.0095 0.5839 +0.0138 0.4753 £0.0010 0.2787 £0.0000 0.4579 £0.0003 0.4459 £0.0044
SubTab 0.5300 4-0.0348 0.5020 4-0.0035 0.7078 4-0.0063 0.4840 4-0.0030 0.4021 4-0.0118 0.6624 1-0.0096 0.6808 £0.0026
VIME 0.5069 £0.0346 0.5900 £-0.0041 0.7548 £0.0050 0.4758 £0.0006 0.3266 +0.0180 0.4583 +0.0015 0.5323 +0.0421
XGBoost 0.5041 4-0.0553 0.4196 40.0002 0.7851 40.0061 0.4749 4-0.0002 0.3546 40.0043 0.7964 1+0.0046 0.6863 £0.0002
CatBoost 0.4056 10.0804 0.3571 £0.0002 0.7940 £0.0029 0.4749 £0.0001 0.3062 £0.0059 0.7847 +0.0065 0.6215 £0.0107

Panel B. Datasets with more continouse variables

model KDD Shipping churn eye-movements nomao gsar road-safety
GFTab 0.7998 1+0.0070 0.6493 +0.0020 0.7865 +0.0365 0.5534 40.0205 0.9411 40.0030 0.7867 +0.0140 0.7553 £0.0042
GRANDE 0.7848 10.0069 0.6186 £0.0045 0.7783 £0.0247 0.5676 +0.0102 0.9113 0.0067 0.7729 £0.0110 0.7566 £0.0017
TabPEN 0.7722 40.0045 0.6432 4-0.0024 0.7657 +0.0174 0.5854 40.0020 0.8893 4-0.0032 0.8254 +0.0000 0.7389 +0.0015
SCARF 0.5603 $0.0183 0.6213 £0.0141 0.4624 +0.0005 0.4878 +0.0167 0.5065 +0.0217 0.6126 £0.0528 0.4976 £0.0023
SubTab 0.6634 40.0269 0.5514 40.0091 0.7539 +0.014 0.5711 40.0060 0.9290 4-0.0038 0.8404 +0.0139 0.6750 £0.0006
VIME 0.7042 £0.0164 0.6358 £0.0148 0.7051 £0.0304 0.5524 0.0277 0.9361 £0.0028 0.8538 £0.0158 0.7528 £0.0025
XGBoost 0.8001 40.0081 0.6247 4+0.0081 0.5231 4-0.0001 0.5533 40.0187 0.9078 40.0002 0.8001 40.0035 0.7452 +0.0250
CatBoost 0.8138 4-0.0073 0.6416 +0.0038 0.5163 £0.0413 0.5685 +0.0161 0.8936 £0.0040 0.7824 £0.0252 0.7545 £0.0153

Table 1: Comparison of F1 score between GFTab and baseline models on 21 tabular benchmark datasets in 20% labeled training
setting. The best performing method is highlighted in red and the second best in blue, while the third best is bold.

Is GFTab really effective for tabular datasets? (without label noise)



Panel A. Datasets with more categorical variables

model

Diabetes

Insurance

adult

bank

cme

credit-approval

credit-g

GFTab
GRANDE
TabPFN
SCARF
SubTab
VIME
XGBoost
CatBoost

0.3826 +0.0139
0.3635 +0.0012
0.2559 1+0.0089
0.2335 4-0.0001
0.2569 +0.0187
0.2611 4-0.0313
0.3534 +0.0002
0.3552 +0.0003

0.4500 £0.0022
0.4225 4+0.0001
0.4312 +£0.0001
0.4312 £0.0002
0.4312 +£0.0001
0.4314 4-0.0001
0.4312 £0.0003
0.4312 £0.0001

0.8023 +0.0070
0.7596 +0.0033
0.7530 +0.0024
0.4157 £0.0244
0.7506 +0.0035
0.7369 +0.0057
0.7344 £0.0006
0.7428 £0.0006

0.7336 1+0.0040
0.7017 40.0042
0.6102 +0.0047
0.4699 4-0.0009
0.6626 +0.0049
0.6932 1+0.0179
0.5246 +0.0024
0.4844 +£0.0103

0.4625 +0.0215
0.4306 +0.0229
0.4566 +0.0027
0.3479 1-0.0425
0.5012 +0.0141
0.4942 4-0.0336
0.4540 £0.0213
0.3694 £0.0430

0.6738 £0.0019
0.8521 £0.0008
0.8975 £0.0091
0.6993 +0.0518
0.6728 £0.0202
0.7177 £0.1637
0.8276 £0.0096
0.8469 +0.0082

0.7433 £0.0424
0.6570 £0.0224
0.4802 £0.0409
0.4451 £0.0377
0.6474 £0.0388
0.5397 £0.0891
0.5968 +0.0171
0.5590 £0.0310

model

dresses-sales

fars

jasmine

kick

okcupid-stem

online-shoppers

shrutime

GFTab
GRANDE
TabPEN
SCARF
SubTab
VIME
XGBoost
CatBoost

0.4165 +0.0057
0.4611 +0.0256
0.3671 +0.0010
0.4694 +0.0838
0.5300 4-0.0348
0.5069 +0.0346
0.5041 1-0.0553
0.4056 10.0804

0.6199 £0.0104
0.5600 +0.0122
0.5247 £0.0104
0.1314 £0.0095
0.5020 £0.0035
0.5900 $-0.0041
0.4196 £0.0002
0.3571 £0.0002

0.7775 £0.0041
0.7630 £0.0044
0.7491 £0.0036
0.5839 +0.0138
0.7078 £0.0063
0.7548 +0.0050
0.7851 +0.0061
0.7940 +0.0029

0.4928 1-0.0044
0.4654 +0.0012
0.4749 +0.0010
0.4753 £0.0010
0.4840 4-0.0030
0.4758 10.0006
0.4749 40.0002
0.4749 40.0001

0.4219 4-0.0195
0.4412 +0.0117
0.3889 +0.0019
0.2787 £0.0000
0.4021 +-0.0118
0.3266 +0.0180
0.3546 £0.0043
0.3062 £0.0059

0.7871 £0.0106
0.7405 £0.0042
0.7954 £0.0012
0.4579 £0.0003
0.6624 +0.0096
0.4583 +0.0015
0.7964 £0.0046
0.7847 +0.0065

0.7088 +£0.0025
0.7355 £0.0034
0.7130 £0.0069
0.4459 £0.0044
0.6808 £0.0026
0.5323 £0.0421
0.6863 £0.0002
0.6215 +£0.0107

Panel B. Datasets with more continouse variables

model

KDD

Shipping

churn

eye-movements

nomao

gsar

road-safety

GFTab
GRANDE
TabPEN
SCARF
SubTab
VIME
XGBoost
CatBoost

0.7998 1+0.0070
0.7848 +0.0069
0.7722 4-0.0045
0.5603 +0.0183
0.6634 +0.0269
0.7042 +0.0164
0.8001 40.0081
0.8138 +0.0073

0.6493 £0.0020
0.6186 £0.0045
0.6432 4-0.0024
0.6213 £0.0141
0.5514 +0.0091
0.6358 £0.0148
0.6247 +0.0081
0.6416 +0.0038

0.7865 1+0.0365
0.7783 £0.0247
0.7657 +0.0174
0.4624 +0.0005
0.7539 £0.014
0.7051 £0.0304
0.5231 4-0.0001
0.5163 +0.0413

0.5534 1-0.0205
0.5676 £0.0102
0.5854 4-0.0020
0.4878 +0.0167
0.5711 40.0060
0.5524 +0.0277
0.5533 +0.0187
0.5685 +0.0161

0.9411 4-0.0030
0.9113 £0.0067
0.8893 1-0.0032
0.5065 +0.0217
0.9290 +-0.0038
0.9361 4-0.0028
0.9078 £0.0002
0.8936 £0.0040

0.7867 £0.0140
0.7729 £0.0110
0.8254 +0.0000
0.6126 £0.0528
0.8404 +0.0139
0.8538 £0.0158
0.8001 +0.0035
0.7824 £0.0252

0.7553 £0.0042
0.7566 £0.0017
0.7389 £0.0015
0.4976 £0.0023
0.6750 £0.0006
0.7528 £0.0025
0.7452 £0.0250
0.7545 £0.0153

Table 1: Comparison of F1 score between GFTab and baseline models on 21 tabular benchmark datasets in 20% labeled training
setting. The best performing method is highlighted in red and the second best in blue, while the third best is bold.

There is no one-size-fits-all solution for all tabular datasets

Is GFTab really effective for tabular datasets? (without label noise)



Panel A. Datasets with more categorical variables

model Diabetes Insurance adult bank cme credit-approval credit-g
GFTab 0.3879 £0.0013 0.4765 £0.0022 0.7680 £0.0015 0.6972 £0.0040 0.4598 +0.0284 0.7853 £0.0054 0.5376 +0.0144
GRANDE 0.3730 £0.0046 0.4594 £0.0034 0.7329 £0.0098 0.6772 £0.0073 0.4316 £0.0337 0.7330 £0.0228 0.4958 £0.0359
TabPFN 0.2335 £0.0120 0.4312 £0.0000 0.7034 £0.0029 0.4689 +0.0012 0.4868 £0.0070 0.7603 £0.0010 0.4118 £0.0100
SCARF 0.2335 £0.0010 0.4312 40.0000 0.4222 £0.0116 0.4710 £0.0035 0.3010 £0.0310 0.6312 £0.0854 0.4372 £0.0374
SubTab 0.2450 £0.0021 0.4328 1-0.0011 0.7325 £0.0039 0.6136 £0.0059 0.4551 £-0.0143 0.3796 £0.0237 0.6007 £0.0144
VIME 0.2219 £0.0097 0.4101 40.0001 0.7142 £0.0082 0.6755 +£0.0106 0.4307 £0.0691 0.6794 £0.1110 0.5629 £0.0671
XGBoost 0.3503 £0.0020 0.4325 4-0.0008 0.7277 £0.0004 0.5405 £0.0049 0.4156 4-0.0087 0.7665 £0.0121 0.5133 £0.010
CatBoost 0.3388 4-0.0006 0.4312 4-0.0000 0.7328 £0.0012 0.4806 £0.0102 0.2565 4-0.0494 0.7738 £0.0175 0.5106 4-0.0377

model dresses-sales fars jasmine kick okcupid-stem online-shoppers shrutime
GFTab 0.4252 £0.1100 0.6039 4-0.0021 0.7133 £0.0194 0.5180 £0.0066 0.4122 £0.0210 0.7366 +£0.0042 0.6641 £-0.0016
GRANDE 0.4824 +0.0656 0.5575 £0.0296 0.7361 +£0.0212 0.5175 £0.0006 0.4783 £0.0050 0.6635 £0.0112 0.6866 +0.0263
TabPFN 0.3671 £0.0002 0.3828 £+0.0137 0.7183 £0.0031 0.4749 £0.0020 0.3336 £0.0052 0.7570 £0.0033 0.5744 £+0.0101
SCARF 0.4245 £0.1140 0.1366 4+0.0211 0.5925 £0.0394 0.4751 £0.0006 0.2922 40.0117 0.4631 £0.0044 0.4439 40.0014
SubTab 0.6184 £0.0105 0.4203 4-0.0009 0.5973 40.0069 0.4901 £0.0013 0.3728 4-0.0316 0.6404 £0.0068 0.6419 4-0.0037
VIME 0.4388 £0.1270 0.5588 £+0.0148 0.7394 £+0.0108 0.4524 £0.0015 0.3198 4-0.0292 0.4601 £0.0033 0.5718 £-0.0397
XGBoost 0.5257 £+0.0169 0.4195 4-0.0003 0.7357 £0.0152 0.4748 £0.0000 0.3063 4-0.0000 0.7791 £0.0050 0.6830 £0.0051
CatBoost 0.3838 40.0290 0.3571 £0.001 0.7494 40.0016 0.4749 £0.0000 0.3036 4-0.0002 0.7284 £0.0020 0.6334 4-0.0045

Panel B. Datasets with more continouse variables

model KDD Shipping churn eye-movements nomao gsar road-safety
GFTab 0.7774 £0.0164 0.6203 +0.0023 0.6285 £0.0041 0.5600 +£0.0129 0.8866 +0.0006 0.7099 £0.0064 0.7349 £0.0019
GRANDE 0.7578 £0.0126 0.6036 £0.0046 0.5806 £0.0091 0.4737 £0.0874 0.8602 £0.0065 0.6714 £0.0374 0.7330 £0.0023
TabPFN 0.7090 £0.0034 0.6411 £0.0028 0.4624 £0.0000 0.5575 £0.0058 0.7818 £0.0131 0.7716 £0.0122 0.6960 £0.0018
SCARF 0.4969 40.0429 0.5569 4+0.1136 0.4624 £0.0000 0.4841 £0.0166 0.5293 40.0149 0.6909 £0.0366 0.4993 40.0115
SubTab 0.6135 40.0057 0.5403 40.0011 0.5855 £0.0156 0.5502 £0.0029 0.8019 4-0.0082 0.6712 £0.0218 0.6624 4-0.0007
VIME 0.6760 £0.0066 0.5941 £+0.0411 0.6422 £0.0266 0.5260 £0.0308 0.8929 £0.0032 0.7852 £0.0044 0.7168 £+0.0012
XGBoost 0.7708 £+0.0099 0.5983 £0.0028 0.5569 £0.0252 0.5641 £0.0112 0.8996 £+0.0012 0.7318 £0.0259 0.7334 £0.0128
CatBoost 0.7982 £0.0068 0.6317 £0.0045 0.4720 £0.0166 0.5921 £0.0169 0.8803 £0.0006 0.7830 £0.0110 0.7233 £0.0068

Table 2: Comparison of F1 score between GFTab and baseline models on 21 tabular benchmark datasets in 20% labeled training
with 20% label noise. The best performing method is highlighted in red and the second best in blue, while the third best is bold.

Is GFTab really effective for tabular datasets? (with label noise)



10% labeled setting 20% labeled setting

Embed - 8/21 12/21 [N

Random - 5/21  6/21 8/21 | 9/21 - 6/21 821 8/21 4/21
Permute - 7/21  8/21 - 621 5/21
None - 5/21 | 9/21 9/21 - 821
10% labeled setting (noised) 20% labeled setting (noised)

Embed - 19/21 - 721 17/21

Random - 5/21 2/21 9/21 - 6/21 5/21 14/21
Permute - 5/21 6/21 P72 - 3/21 5/21
None - 5/21 4/21 12/21 9/21 - 3/21 4/21 7/21
1

None - I

GFTab -
Embed -
Random
Permute -
GFTab -
Embed -
Random -
Permute -

Figure 2: Win matrices for different categorical variable cor-
ruption methods.

How to corrupt categorical variables effectively?



10% labeled setting 20% labeled setting
Uniform - 5/21 4/21 6/21 - 8/21 10/21 9/21
Barlow -  6/21 - 621 10/21 10/21
InfoNCE - 7721 m - m
|

10% labeled setting (noised) 20% labeled setting (noised)
Uniform -  7/21 5/21 8/21 - 8/21

Barlow - 16/21 - 6721 12/21 9/21
InfoNCE - 7/21 13/21 - 2/21 12/21

GFTab Uniform Barlow InfoNCE GFTab Uniform Barlow InfoNCE

Figure 3: Win matrix between GFTab with three different
similarity losses.

Is geodesic flow useful for tabular datasets?



Proposed GFTab: A semi-supervised framework designed for mixed-type tabular data
(continuous + categorical).

Key Contribution

« Variable-Specific Corruption: Tailored noise injection for continuous vs. categorical
variables.

« Geodesic Flow Kernel: Smoothly measures similarity across corrupted data
subspaces.

« Tree-Based Embedding: Leverages hierarchical relationships from labeled data.

Experimental Results

« QOutperforms existing ML/DL baselines under limited labeled data and noisy label
settings.

* Robust across diverse datasets with both categorical-dominant and continuous-
dominant features.

Conclusion



Thank you
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