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Tabular benchmarks

Addressing continuous variable bias in Tabular benchmarks

•  We selected 21 datasets after carefully reviewing more than 4,000 datasets including OpenML (3,953 datasets), 

AMLB (71 datasets), and Grinsztajn et al.(22 datasets). 

• Preprocessing. Datasets with more than 30% missing values were excluded. For the remaining datasets, columns 

with more than 30% missing values were removed. Also, redundant categorical variables, which have only one 

category, were removed.

• Variable types. In order to evaluate tabular models in a more real-world like environment, we selected datasets with 

both continuous and categorical variables. Surprisingly, around 60% of the entire datasets did not satisfy this 

condition.

• Data distribution. in this study, We assume that data samples are i.i.d. Hence, datasets with certain distributional 

structure (sequential or temporal) were excluded. Also, we eliminated datasets with too simple distributions, which 

can be easily predicted with high Accuracy by naïve models. Artificially generated datasets were excluded as well. 

Lastly, as this study focuses on classification tasks, datasets for regression tasks were not considered.

• Dataset size. Most previous studies did not evaluate their models with datasets of different sizes. For more 

comprehensive evaluation, we selected datasets with different sizes: small-sized (∼10,000 samples), medium-sized 

(10,000∼100,000), and large-sized (100,000∼).



• TabTransformer (Huang et al., 2020)

➢ Uses Transformer layers to capture column-wise relationships, but largely treats all features in a uniform way. 

Categorical variables are embedded; continuous variables typically pass through simple MLPs. 

• FT-Transformer (Gorishniy et al., 2021)

➢ Adopts a Transformer-based encoder for tabular data, again applying similar transformations across both 

categorical and continuous features. Shows good performance on certain benchmarks but often assumes well-

behaved or purely continuous inputs.

• AutoInt (Song et al., 2019)

➢ Designed for learning feature interactions automatically through self-attention layers. Primarily tested in 

recommendation-like tasks, where categorical embeddings dominate.

• NODE (Popov et al., 2020)

➢ Trains ensembles of differentiable oblivious decision trees, bridging the gap between tree methods and neural 

nets. Evaluations have focused on a limited set of (mostly continuous) tabular benchmarks.

• TabNet (Arik and Pfister, 2021)

➢ Employs sequential attention to columns and learns feature selection in a differentiable way. However, it still 

treats all feature types somewhat uniformly and may struggle with heavily imbalanced categorical data.

• GRANDE (Marton et al., 2024)

➢ Focuses on ensembling multiple neural networks for tabular data, achieving robust predictions. Mostly tested 

under fully supervised conditions and primarily on continuous or balanced scenarios(labels).

Related Works (Tabular DL Models)

• TabPFN (Hollmann et al., 2023)

➢ A probabilistic approach that directly infers posterior predictive distributions for tabular classification. It shows 

promise but has not been deeply tested on highly mixed or categorical-heavy datasets.



• SCARF (Bahri et al., 2021)

➢ Introduces a self-supervised objective by corrupting a random subset of features and maximizing the agreement 

between original and corrupted views. However, it does not distinguish between continuous and categorical 

variables, and tested primarily on continuous-heavy datasets.

Related Works (Self-/Semi-Supervised Learning for Tabular Data)

• VIME (Yoon et al., 2020)

➢ One of the first to propose a semi-supervised approach for tabular data, employing a consistency-based loss. 

Uses the same noise injection strategy across all features, potentially overlooking crucial differences between 

categorical and continuous attributes.

• SubTab (Ucar et al., 2021)

➢ Splits columns into multiple subsets and uses an autoencoder to reconstruct the data from partial subsets. Again, 

the corruption does not adapt to different variable types, and evaluation data mostly contained continuous 

features.

Common Shortcomings

• A prevalent theme is the lack of tailored handling for mixed-variable settings—continuous + categorical 

features—in a unified framework.

• Many models are benchmarked on continuous-heavy data, which may not reflect real-world tabular 

datasets containing complex categorical features and imbalances.

• Few methods explicitly address semi-supervised scenarios where labeled data is limited or noisy.



Methodology : Overview 

GFTab (Geodesic Flow Kernel on Mixed-variable Tabular data)

• The model proposed in this study aims to obtain an invariant representation by considering both continuous and categorical variables 

through a (1) corruption method and (2) geodesic kernel flow, reflecting the basic structure of the data from the corrupted representation. 

• This technique is particularly useful for dealing with diverse types of data, ensuring that the model can effectively learn from and represent 

both numerical (continuous) and non-numerical (categorical) elements.



Methodology : Corruption method (continuous variable) 

• We have 𝑁𝑙 labeld samples 𝐷𝑙 = 𝑥𝑖 , 𝑦𝑖
𝑖=1

𝑁𝑙
⊆ ℝ𝑀+1 and 𝑁𝑢 un-labeled samples 𝐷𝑢 = 𝑥𝑖

𝑖=1

𝑁𝑢
⊆ ℝ𝑀,  where 𝑁𝑢 ≫ 𝑁𝑙.

• Here, 𝑥𝑖 ⊆ ℝ𝑀 is an example, 𝑦𝑖 ⊆ ℝ is the label of 𝑥𝑖.

• In this work, 𝑥𝑖 can be decomposed into continuous variable 𝑥𝑖,𝑐𝑜𝑛𝑡 ∈ ℝ𝑀𝑐𝑜𝑛𝑡 and categorical variable 𝑥𝑖,𝑐𝑎𝑡 ∈ ℝ𝑀𝑐𝑎𝑡 . 

Corruption method – continuous variable

 

• 𝑥𝑖,𝑐𝑜𝑛𝑡 = VSN(x𝑖,𝑐𝑜𝑛𝑡)  where VSN is Variable Selection Network.

Here, we define permutation matrix, 𝐏 size 𝑑cont × 𝑑cont.

• ෤𝑥soft
𝑖,𝑐𝑜𝑛𝑡 = 𝜆𝑥𝑖,𝑐𝑜𝑛𝑡 +(1-𝜆) ො𝑥𝑖,𝑐𝑜𝑛𝑡𝐏

• ෤𝑥hard
𝑖,𝑐𝑜𝑛𝑡 = (1−𝜆)𝑥𝑖,𝑐𝑜𝑛𝑡 + 𝜆 ො𝑥𝑖,𝑐𝑜𝑛𝑡𝐏                   Where ො𝑥𝑖,𝑐𝑜𝑛𝑡 = ො𝑥𝑚

𝑖,𝑐𝑜𝑛𝑡

𝑚=1

𝑀𝑐𝑜𝑛𝑡
and ො𝑥𝑚

𝑖,𝑐𝑜𝑛𝑡~𝑃𝑚
𝑐𝑜𝑛𝑡

Let 𝑃𝑚
𝑐𝑜𝑛𝑡 be the uniform distribution 𝑋𝑚

𝑐𝑜𝑛𝑡 = {𝑥𝑚
𝑖,𝑐𝑜𝑛𝑡: 𝑥𝑖,𝑐𝑜𝑛𝑡 ∈ 𝑋𝑐𝑜𝑛𝑡}, where 𝑥𝑚

𝑖,𝑐𝑜𝑛𝑡
denotes the 𝑚-th coordinate of 

𝑥𝑖,𝑐𝑜𝑛𝑡.



Methodology : Corruption method (categorical variable) 

• We have 𝑁𝑙 labeld samples 𝐷𝑙 = 𝑥𝑖 , 𝑦𝑖
𝑖=1

𝑁𝑙
⊆ ℝ𝑀+1 and 𝑁𝑢 un-labeled samples 𝐷𝑢 = 𝑥𝑖

𝑖=1

𝑁𝑢
⊆ ℝ𝑀,  where 𝑁𝑢 ≫ 𝑁𝑙.

• Here, 𝑥𝑖 ⊆ ℝ𝑀 is an example, 𝑦𝑖 ⊆ ℝ is the label of 𝑥𝑖.

• In this work, 𝑥𝑖 can be decomposed into continuous variable 𝑥𝑖,𝑐𝑜𝑛𝑡 ∈ ℝ𝑀𝑐𝑜𝑛𝑡 and categorical variable 𝑥𝑖,𝑐𝑎𝑡 ∈ ℝ𝑀𝑐𝑎𝑡 . 

Feature corruption – Categorical variable

 
Let 𝑘 = 𝑘1, … , 𝑘𝑀𝑐𝑎𝑡

𝑇
be the mask vector where 𝑘𝑚’s are independently sampled from over the set ℤ ∩ −𝑠𝑚, 𝑠𝑚 \{0}

with equal probability. Where 𝑠𝑚 is size of the neighborhood at 𝑘𝑚. We can find the size of neighborhood for which the 

corruption rate is 𝑟% greater for a categorical variable via Remark 1.

• ෤𝑥soft
𝑐𝑎𝑡 = 𝑥𝑐𝑎𝑡 + nh𝑟 𝑘  

•  ෤𝑥hard
𝑐𝑎𝑡 = 𝑥𝑐𝑎𝑡 + nh𝑠=1(𝑘)

Notice that if the corrupted value ෤𝑥𝑟
𝑖,𝑐𝑎𝑡

 falls outside the range of the variable, the mask 𝑘𝑚 is set to zero.    



Methodology : Corruption method (categorical variable) 
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Geodesic Flow Kernel

A.1. Construct Geodesic Flow

We use the notion of subspaces to incorporate a collection of features derived from both soft 

and hard representation. To do this, we model the by low-dimensional subspace with basis 𝑷 ∈
ℝ𝑑𝑙𝑖𝑛×𝐷.  

DEF 1 (Grassmannian) Grassmannian 𝐆(𝐷, 𝑑𝑙𝑖𝑛), which is the collection of all 𝐷-dimensional 

linear subspaces ℝ𝑑𝑙𝑖𝑛×𝐷, is a smooth Riemannian manifold. Also, an element 𝑷 of 𝐆(𝐷, 𝑑𝑙𝑖𝑛) 

can be specified by a basis. That is 𝑑𝑙𝑖𝑛 × 𝐷 matrix with orthogonal columns.

𝑧h = 𝑓enc( ෤𝑥hard
cat , ෤𝑥hard

cont)

𝑧s = 𝑓enc( ෤𝑥soft
cat , ෤𝑥soft

cont)

𝑧h

𝑧s𝐆𝐅 0  

𝐆𝐅 1  



Geodesic Flow Kernel

DEF 2. (Geodesic flow) Let 𝑷𝒔 and 𝑷𝒉 denote the sets of basis vector for the subspaces 

corresponding to the soft and hard representations, respectively. The geodesic flow between 𝑷𝒔

and 𝑷𝒉 denoted GF : π ∈ 0,1 → GF(π) ∈ 𝐆(D, d𝒍𝒊𝒏). Then we can rewrite the geodesic flow:

                                    GF(π)= 𝑷ℎ 𝑹𝒉
𝑼1𝚪(𝜋) 0
0 −𝑼2 𝚺(𝜋)

= 𝑷ℎ𝑼1𝚪 𝜋 − 𝑹ℎ𝑼2𝚺(𝜋)                                               

(1)

Here, the 𝑹ℎ ∈ ℝ𝑑𝑙𝑖𝑛×(𝑑𝑙𝑖𝑛−𝐷) is the orthogonal complement of 𝑷ℎ, that is 𝑹ℎ
⊤𝑷ℎ=0, and the  𝚪

and 𝚺 diagonal matrices. Also, The 𝑼1 ∈ ℝ𝐷×𝐷 and 𝑼2 ∈ ℝ(𝐷−𝑑𝑙𝑖𝑛)×𝐷 are orthonormal 

matrices.

DEF 3. (Geodesic Flow Kernel) Let 𝒛𝒉=𝒇𝑒𝑛𝑐 ෤𝑥soft
𝑐𝑎𝑡 , ෤𝑥soft

𝑐𝑜𝑛𝑡  and 𝒛𝒔 = 𝒇𝑒𝑛𝑐( ෤𝑥Hard
𝑐𝑎𝑡 , ෤𝑥Hard

𝑐𝑜𝑛𝑡 ) are the 

encoded representation, respectively. Then,  the geodesic flow kernel is defined as :

𝑧ℎ
⊤𝑨 𝑧𝑠 = න

0

1

(𝐆𝐅 𝜋 ⊤𝑧ℎ)⊤ 𝐆𝐅 𝜋 ⊤𝑧𝑠  𝑑𝜋

Where 𝑨 = 0׬

1
𝐆𝐅 𝜋 𝐆𝐅 𝜋 ⊤𝑑𝜋. 



Geodesic Flow Kernel

𝑧h

𝑧s𝐆𝐅 0  

𝐆𝐅 1  

𝐆𝐅 0  𝐆𝐅 1  

Geodesic Flow 

Example

< 𝑥ℎ, 𝑥ℎ >= 0׬

1
GF 𝜋 T𝑧𝑠

T
GF 𝜋 T𝑧ℎ 𝑑𝜋 = 𝑧𝑠

⊤𝐴𝑧ℎ

Notice 1 : that we can calculate A in closed-form. (A is a d by d psd.)

Notice 2 : A is the matrix that defines the manifold structure between 

features of two vector.

𝑥𝑠 = GF 0 ⊤𝑧𝑠, … , GF 𝜋 ⊤𝑧𝑠, … , GF 1 ⊤𝑧𝑠

𝑥ℎ = [GF 0 ⊤𝑧ℎ, … , GF 𝜋 ⊤𝑧ℎ, … , GF 1 ⊤𝑧ℎ]

More similar to hard More similar to soft

𝐿𝑜𝑠𝑠 = 1 −
𝑧𝑠

𝑇𝐴𝑧ℎ

||𝐴0.5𝑧𝑠||||𝐴0.5𝑧ℎ||

Geodesic loss 



Methodology

ℒGFTab = ℒsim + 𝛽ℒce



Experiment Settings

Baseline model

GFTab                (Ours)

SCARF              (ICLR 2022 Spotlight)

SubTab               (NeurIPS 2021)

VIME                 (NeurIPS 2020)

GRANDE (ICLR, 2024)

TabPFN     (ICLR 2023)

XGBoost

Caboost

All experiments (GFTab and all baseline models) were repeated three times.

All the models were trained with labels for 10% and 20% of the entire data samples.

Additionally, there was an experiment conducted with 20% label noise introduced only in 

the training data to assess the models' robustness to noisy labels. 

For XGBoost and CatBoost, we optimized hyperparameters using Optuna, conducting 250 

experiments for each model with a search space consistent with GRANDE. Deep learning 

models used settings from their respective papers for finding hyper-parameters, while SCARF 

and VIME had arbitrarily set ranges detailed in the appendix.

Experiment setting



Is GFTab really effective for tabular datasets? (without label noise)



Is GFTab really effective for tabular datasets? (without label noise)

There is no one-size-fits-all solution for all tabular datasets



Is GFTab really effective for tabular datasets? (with label noise)



How to corrupt categorical variables effectively?



Is geodesic flow useful for tabular datasets?



Conclusion

Proposed GFTab: A semi-supervised framework designed for mixed-type tabular data 

(continuous + categorical).

Key Contribution

• Variable-Specific Corruption: Tailored noise injection for continuous vs. categorical 

variables.

• Geodesic Flow Kernel: Smoothly measures similarity across corrupted data 

subspaces.

• Tree-Based Embedding: Leverages hierarchical relationships from labeled data.

Experimental Results

• Outperforms existing ML/DL baselines under limited labeled data and noisy label 

settings.

• Robust across diverse datasets with both categorical-dominant and continuous-

dominant features.



Thank you
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