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Motivation

Accurate estimation of financial parameters is crucial

Example : Pair trading : How do I find similar stocks to pair trade? Cointegration test

Two time series are cointegrated if a linear combination has constant mean and standard deviation. In other words, 

the two series never stray too far from one another in the historical period.                                                            

What is cointergration?

Finding Similar Stocks

using the Cointergration Test

?
Historical period Future period
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Motivation

Accurate estimation of financial parameters is crucial

Example : Portfolio optimization : How do I estimate 𝜇 and Σ ?
using the sample means of its historical 

returns given a lookback window.

Maximize: 𝑤𝑇𝜇 − 𝜓1𝑇 𝑤 − 𝑤0

Subject to: 𝑤𝑇Σ𝑤 ≤ 𝜎target
2 𝑤𝑇1 = 0, 0 ≤ 𝑤𝑘 ≤ for all 𝑘 = 1,2, … , 𝑁.

The long-only Mean-Variance Optimization problem is here:
Transaction cost

(𝜇,𝑢𝑡𝑖 =
1

𝑇
෍

𝑑=𝑡−1

𝑡−𝑇

𝑟𝑑𝑖

Historical period Future period

The expected return at time 𝑡 for asset 𝑖 is 

estimated using the sample means of its historical 

returns given a lookback window of T-months 

𝜎)
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Motivation

Finding Similar Stocks

using the Cointergration Test

?
Historical period Future period

(𝜇,𝑢𝑡𝑖 =
1

𝑇
෍

𝑑=𝑡−1

𝑡−𝑇

𝑟𝑑𝑖

Historical period Future period

The expected return at time 𝑡 for asset 𝑖 is 

estimated using the sample means of its historical 

returns given a lookback window of T-months 

𝜎)



Main challenge
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Temporal domain shift Static data

Caused by the non-stationarity of financial markets 3-Statement, Firm description and etc.

Ambiguity & Lack of labels

Due to rapid globalization and digitalization

Main observation

• Temporal domain shift: The movement of stocks continuously changes over time. This is mainly due to the unique characteristics 

of individual stocks as well as interactions between different stocks and various factors that can lead to domain shifts.

• Static data: Stocks are characterized not only by price data but also by a variety of static information. 

• Ambiguity: Ambiguity in conventional regional and sector classifications due to rapid globalization and digitalization.

• Lack of labels: There is no appropriate label for identifying similar stocks.



Related work
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Selected related work : Self-supervised learning & Temporal domain generalization 

• Self-supervised learning has primarily evolved within the field of computer vision.

• Most existing works in SSL have focused on invariance[6][7]. That is, they rely on simple inductive biased that two similar 

observations should yield similar outputs, and there have proven to be effective when augmenting data (mostly for images)[8][9].

 For non-stationary data, such as stocks, it is quite challenging to incorporate these distribution shift into the SSL framework.

[5] Xinlei Chen and Kaiming He. 2021. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 15750–15758.

[6] Jean-Bastien Grill et al. 2020. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural information processing systems 33 (2020), 21271–21284.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In International conference on machine learning. PMLR, 1597–1607

[8] Longlong Jing and Yingli Tian. 2020. Self-supervised visual feature learning with deep neural networks: A survey. IEEE transactions on pattern analysis and machine intelligence 43, 11 (2020), 4037–4058.

[9] Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International conference on machine learning (pp. 1597-1607). PMLR.

• Domain generalization refers to the learning of general model representation, and various methods have been proposed for this

purpose[9][10][11]. 

 Existing studies assume that the domain index set spans time and cannot adaptively learn temporal shift over time.

 Fortunately, DRAIN[12] is the first temporal domain generalization method to address this limitation by adaptively learning 

temporal drifts across multiple source domains at supervised learning task.  

[10] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. 2017. Domain randomization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ 

international conference on intelligent robots and systems (IROS). IEEE, 23–30

[11] Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool. 2019. Dlow: Domain flow for adaptation and generalization. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2477–2486.

[12] Wen Li, Zheng Xu, Dong Xu, Dengxin Dai, and Luc Van Gool. 2017. Domain generalization and adaptation using low rank exemplar SVMs. IEEE transactions on pattern analysis and machine intelligence 40, 5 (2017), 

1114–1127.

[13] Bai, G., Ling, C., & Zhao, L. (2022). Temporal Domain Generalization with Drift-Aware Dynamic Neural Networks. ICLR2023, Spotlight



Related work

UNIST Financial Engineering Lab. 6

Selected related work : Self-supervised learning & Temporal domain generalization 

• Most existing works in SSL have focused on invariance[6][7]. That is, they rely on simple inductive biased that two similar 

observations should yield similar outputs, and there have proven to be effective when augmenting data (mostly for images)[8][9].

 For non-stationary data, such as stocks, it is quite challenging to incorporate these distribution shift into the SSL framework.
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Figure 1. A simple framework for contrastive learning of visual representations
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Selected related work : Self-supervised learning & Temporal domain generalization 

• Most existing works in SSL have focused on invariance[6][7]. That is, they rely on simple inductive biased that two similar 

observations should yield similar outputs, and there have proven to be effective when augmenting data (mostly for images)[8][9].

 For non-stationary data, such as stocks, it is quite challenging to incorporate these distribution shift into the SSL framework.
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Selected related work : Self-supervised learning & Temporal domain generalization 

• Most existing works in SSL have focused on invariance[6][7]. That is, they rely on simple inductive biased that two similar 

observations should yield similar outputs, and there have proven to be effective when augmenting data (mostly for images)[8][9].

 For non-stationary data, such as stocks, it is quite challenging to incorporate these distribution shift into the SSL framework.
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Selected related work : Self-supervised learning & Temporal domain generalization 

• Most existing works in SSL have focused on invariance[6][7]. That is, they rely on simple inductive biased that two similar 

observations should yield similar outputs, and there have proven to be effective when augmenting data (mostly for images)[8][9].

 For non-stationary data, such as stocks, it is quite challenging to incorporate these distribution shift into the SSL framework.

How to define view in the time-series data?  

How to exploit the inductive bias for time-series data?

How to learn temporal context?

 What about temporal data settings(e.g., time-series)?
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Overview of SimStock
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• We propose SimStock to effectively extract stock representations.

• The keys of this research lies in using elaborately designed Temporal domain generalization and self-supervised 

learning to address the challenges previously mentioned.
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Figure 2. The proposed model (SimStock) combines self-

supervised learning framework with temporal domain

generalization for stock representations.



Experiment settings
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Dataset

NYSE

NASDAQ

SSE(Shanghai Stock exchange) 

SZSE(Shenzhen Stock Exchange)

TSE(Tokyo Stock Exchange)

4,231 stocks, we refer to them as the US exchanges

1,408 stocks

1,696 stocks

3,882 stocks

Time period

Baseline models

Corr1      : past one-year returns correlation

Corr2      : training period returns correlation

Peer : list of similar stocks provided by Google, Yahoo Finance, and Financial Modeling Prep

TS2VEC : Deep learning based state-of-the-art method

Training period : Jan 01, 2018 to Dec 31, 2021

Reference period : Jan 01, 2022 to Dec 31, 2022

Test period : Jan 01, 2023 to Dec 31, 2023



Can SimStock find similar stocks?
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• In different exchanges scenario, We apply the weights of a model trained on a specific exchange to a different exchange. 

• For example, models trained on the US exchange can be used to find similar stocks in the SSE, SZSE, or TSE exchanges. 

Evaluation scenarios

How to find similar stocks?

• If the query stock is JP Morgan, we can find the K stocks that are most similar to JP Morgan with L2 distance in embedding 

space among all stocks on the exchange. 

SimStock

US dataset Find Similar stock
(L2 distance)US dataset

(Out-of-sample)

Same exchange

Trained(US dataset)

Different exchanges SimStock

Representation

SSE dataset

(Out-of-sample)

Representation

Find Similar stock
(L2 distance)

Figure 4. High-level overview of evaluation scenarios

Trained(US dataset)



Can SimStock find similar stocks? (Same exchange scenario)
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• The diagonal plots in this figure illustrate the performance(DTW) of different models in same exchange scenario.

• DTW measure by selecting the top TOP@9, TOP@7, TOP@5, TOP@3 and TOP@1 similar stocks. 

• It is clear that SimStock stands out as the best performer in the same exchange scenario compared to all other baseline models

except SZSE to SZSE.

One-to-one : Given a query stock, we find similar stocks within the same exchange.

Figure 5. Performance of models in

same exchange and different exchanges

scenarios for finding similar stocks.
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• The diagonal plots in this figure illustrate the performance(DTW) of different models in same exchange scenario.

• DTW measure by selecting the top TOP@9, TOP@7, TOP@5, TOP@3 and TOP@1 similar stocks. 

• It is clear that SimStock stands out as the best performer in the one-to-one scenario compared to all other baseline models except 

SZSE to SZSE.

One-to-one : Given a query stock, we find similar stocks within the same exchange.

Figure 5. Performance of models in

same exchange and different exchanges

scenarios for finding similar stocks.



Can SimStock find similar stocks? (Different exchanges)
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Different exchanges : Given a query stock, we find similar stocks within another exchange

• The off-diagonal plots in this figure illustrate the performance(DTW) of different models in different exchanges scenario.

• Peer is not available for this scenario, because most trading platforms do not provide information on similar stocks in other

exchanges.

• SimStock performed exceptionally well in all one-to-many scenarios except for one case. (SZSE to SSE)

Figure 5. Performance of models in

same exchange and different exchanges

scenarios for finding similar stocks.



Application to Pairs trading (Result) (Motivation skip)
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Table 1 : Average terminal wealth (first row) and maximum drawdown (MDD) (second row) achieved by applying pairs trading to the top@3 similar stocks 

identified by SimStock, TS2VEC, Corr1, Corr2, coint for each query stock. NaN** values in both the terminal wealth and MDD indicate that the method failed to 

generate buy/sell signals for all three stocks in the pair. NaN* values only in the standard deviation indicate that the method failed to generate buy/sell signals for 

two out of the three stocks in the pair. For all other values, all method generated buy/sell signals for all three stocks in the pair.

• We employ price ratio approach for 

pairs trading.

Settings
• Initial trading capital : 10,000 USD

• Predetermined threshold (Stop loss) : 500 USD

• Z-score threshold : ±1.25 (Buy & Sell)

• Z-score threshold : ±0.5 (Position closed)

• Finding top 3 similar stocks 



Application to index tracking of thematic ETFs (Results) (Motivation Skip)
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Index tracking of thematic ETFs

Settings

• Equal-weighted portfolio

• Tracking portfolios constructed 

using the top 10 similar stocks

Figure 2 Cumulative return curves of the four 

thematic ETFs (ARKK, SKYY, BOTZ, and LIT) 

and their corresponding tracking portfolios 

constructed using the top 10 similar stocks 

identified by SimStock and the baseline methods 

(TS2VEC, Corr1, and Corr2) from the US 

exchange. The closer a portfolio’s curve follows the 

respective ETF curve (dotted black line), the better 

the tracking performance.



Application to Portfolio optimization 
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Maximize : 𝑤𝑇𝜇 − 𝜓1𝑇|𝑤 − 𝑤0|

Subject to : 𝑤𝑇Σ𝑤 ≤ 𝜎target
2 ,

𝑤𝑇1 = 0 ,
0 ≤ 𝑤𝑘 ≤ 1 for all 𝑘 = 1,2, . . , 𝑁

Portfolio’s expected return - Transaction costs

Portfolio variance must not exceed predetermined risk target 

Previous portfolio weights

Introduction

We investigate whether SimStock embeddings can enhance portfolio optimization. Specifically, we construct the

correlation matrix using the SimStock embedding as a similarity measure, and use it as an input for portfolio

optimization. We compare the portfolio performance using the SimStock embedding with other covariance estimators.



Application to Portfolio optimization 
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Application to Portfolio optimization
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Figure 3 Ex-post efficient frontiers displaying annualized return and 

volatility of portfolios optimized for different risk targets. The black 

vertical dotted lines represent the average volatility of the S&P500 

and JPX Prime 150, respectively

Maximize : 𝑤𝑇𝜇 − 𝜓1𝑇|𝑤 − 𝑤0|

Subject to : 𝑤𝑇Σ𝑤 ≤ 𝜎target
2 ,

𝑤𝑇1 = 0 ,
0 ≤ 𝑤𝑘 ≤ 1 for all 𝑘 = 1,2, . . , 𝑁

• The results demonstrate that the proposed SimStock

embedding outperforms other methods. However, this 

performance is achieved by taking on slightly more risk 

compared to other models, leading to better returns.

• On the other hand, TS2VEC, represented by the gray 

line, shows very poor performance. 

• This suggests that even with a data-driven approach, 

whether or not the temporal domain is taken into account 

can be a crucial factor in portfolio performance.

Result



Application to Portfolio optimization
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Conclusion
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• How can we find Stock representations to identify similar stocks? 

• If we can identify similar stocks, what are the applications? Pair trading, Direct indexing, Portfolio optimization,..etc

Use SimStock

• SimStock demonstrates that temporal self-supervised learning can effectively identify similar stocks, offering 

practical benefits for investment strategies.
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Appendix
(Model Architecture)
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SimStock
(Model Architecture)



What is Temporal domain generalization?
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• Consider training a model for some classification tasks based on the annual twitter dataset such that the trained 

model can generalize to the future domains (e.g., 2023). The temporal drift of data distribution can influence 

the prediction model such as the rotation of the decision boundary in this case.

Figure 3. An illustrative example of temporal domain generalization

Temporal domain generalization(TDG)



What is Temporal domain generalization?
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• In each domain 𝐷𝑠, the representation 𝑓𝜃𝑠 can be trained by maximizing the conditional probability ℙ 𝜃𝑠 𝐷𝑠 .

• Here, 𝜃𝑠 signifies the state of the model parameters at timestamp 𝑡𝑠. 
• Given the dynamic nature of 𝐷𝑠, the conditional probability ℙ 𝜃𝑠 𝐷𝑠 will also change over time. 
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Figure 2. The proposed model (SimStock) combines self-

supervised learning framework with temporal domain

generalization for stock representations.



What is Temporal domain generalization?
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• The objective of temporal domain generalization is to estimate 𝜃𝑇+1 utilizing all the training data from 𝐷1:𝑇. 

• From a probabilistic perspective, we can express this as:

ℙ 𝜃𝑇+1 𝐷1:𝑇 = Ω׬ ℙ 𝜃𝑇+1 𝜃1:𝑇 , 𝐷1:𝑇 ℙ 𝜃1:𝑇 𝐷1:𝑇 𝑑𝜃1:𝑇

Inference Training

Where Ω denotes the space for model parameters 𝜃1:𝑇. In Eq. 1, the first term inside the ℙ 𝜃𝑇+1 𝜃1:𝑇 , 𝐷1:𝑇 represents the inference 

phase, which is the process of predicting the future state of the target representation network (i.e., 𝜃𝑇+1) given all historical state (i.e., 

𝜃1:𝑇 , 𝐷1:𝑇). The second term ℙ 𝜃1:𝑇 𝐷1:𝑇 signifies the training phase, which involves leveraging all training data 𝐷1:𝑇 to ascertain 

the state of the model on each source domain.

(1)

Temporal domain generalization(TDG)

Training phase

• By chain rule, we can further decompose the training phases as follows:

ℙ 𝜃1:𝑇 𝐷1:𝑇 =ෑ
𝑠=1

𝑇

ℙ(𝜃𝑠|𝜃1:𝑠−1, 𝐷1:𝑇)

= ℙ 𝜃1 𝐷1 ℙ 𝜃2 𝜃1, 𝐷1:2 …ℙ 𝜃𝑇 𝜃1:𝑇−1, 𝐷1:𝑇
Here, we assume for each time domain 𝑡𝑠, and the model parameters 𝜃𝑠 only depends on the current and previous domain, and there 

is no access to future data.



What is Temporal domain generalization?
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What is Self-Supervised learning?
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• Self-supervised learning defines a pretext task based on unlabeled inputs to produce representations.

• Our goal is to learn a representation model 𝒇𝜽𝒔, which captures the stock data that evolves over time. 

To get a representation that reflects the characteristics of the stocks,

Q1. How can we create a positive and negative view?

Q3. How do we learn temporal context?

To create a view for stocks, we propose the following method. (A1 & A3)

Temporal Feature Variant

(Temporal) Dimension Corruption

Feature Tokenizer                      Triplet loss



Temporal Representation Learning (Step 1)
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• The time-varying patterns of stock prices are essential for identifying short- and long-term characteristics of stocks.
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Input Temporal Feature Variant

• To learn more rich representations, a price feature 𝑥𝑠 is processed by a temporal transformation module 𝜇.
• The price feature 𝑥𝑠 is provided with 𝑘 variations, denoted as 𝜇(𝑥𝑠) = CONCAT(𝜇1 𝑥𝑠 , 𝜇2 𝑥𝑠 , … , 𝜇𝑘(𝑥

𝑠))∈ ℝ𝑑𝑚𝑘.

Here, 𝑑𝑚𝑘 = 𝑑𝑚 × 𝑘, and each 𝜇1, 𝜇2… , 𝜇𝑘 ∈ 𝑈, where 𝑈 denotes the collection of temporal transformations.

𝐇𝒔 is combined embedding that incorporates both temporal feature 

variant 𝜇(𝑥𝑠) and the embedded static meta data Embed(𝑐𝑠).

𝐇𝒔 = 𝜇(𝑥𝑠) + Embed(𝑐𝑠) ∈ ℝ𝑑𝑚𝑘

Temporal Feature Variant (For make combined embedding)

Where 𝜇(𝑥𝑠) = CONCAT(𝜇1 𝑥𝑠 , 𝜇2 𝑥𝑠 , … , 𝜇𝑘(𝑥
𝑠))∈ ℝ𝑑𝑚𝑘.



Temporal Representation Learning (Step 2)

UNIST Financial Engineering Lab. 32

• The feature-wise token embedding 𝐓𝐊𝐄𝒋
𝒔 for given feature index 𝑗 are computed as 𝐓𝐊𝐄𝒋

𝒔 = b𝑗
𝑠 + H𝑗

𝑠W𝑗
𝑠.  Where b𝑗

𝑠 ∈ ℝ𝑑 is the 𝑗-

th feature bias term and W𝑗
𝑠 ∈ ℝ𝑑 is the weight vector for 𝑗-th feature. Through this process, we can create efficient embeddings for 

various time-related features.

• The token embedding 𝐓𝐊𝐄𝒔 ∈ ℝ𝑑𝑐×𝑑 can be obtained by stacking all of the feature embedding 𝐓𝐊𝐄𝒋
𝒔 and adding a special [ST] 

token, which is known to process the essence of information after training.
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• We create positive and negative views, 𝐇𝑝𝑜𝑠
𝑠 and 𝐇𝑛𝑒𝑔

𝑠 , by randomly shuffling the dimension within the 𝐓𝐊𝐄𝑠. Here, we define 

two permutation matrices, 𝐏𝑝𝑜𝑠
𝑠 and 𝐏𝑛𝑒𝑔

𝑠 both size 𝑑 × 𝑑1.

𝐇𝑝𝑜𝑠
𝑠 = 𝜆𝐓𝐊𝐄𝒔 + 1 − 𝜆 𝐓𝐊𝐄𝒔𝐏𝑝𝑜𝑠

𝑠

𝐇𝑛𝑒𝑔
𝑠 = (1 − 𝜆)𝐓𝐊𝐄𝒔 + 𝜆𝐓𝐊𝐄𝒔𝐏𝑛𝑒𝑔

𝑠

Temporal Dimension Corruption (View construction)

• In this case, the formulas (5) and (6) generate positive and negative views for SSL. The degree of this perturbation in both views is 

determined by the mixing parameter 𝜆.
• The positive view 𝐇𝑝𝑜𝑠

𝑠 has minor perturbations, maintaining much of the original token embedding (𝐓𝐊𝐄𝒔).

• The negative view 𝐇𝑛𝑒𝑔
𝑠 is more altered, with greater dimension shuffling, deviation more from the original (𝐓𝐊𝐄𝒔).

1] A permutation matrix is a square 0-1 matrix that has exactly one enty of 1 in each row and each column and 0s elsewhere.

(5)

(6)
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Input Temporal Feature Variant Dimension Corruption Representation

𝐇𝒑𝒐𝒔
𝐬 𝑓𝜃𝑠

𝑓𝜃𝑠

Shared weight𝐇𝒔

𝐇𝒏𝒆𝒈
𝐒

𝐇𝒔

Triplet Loss

LSTM (𝑔𝜙)

(domain s)

Decoding

Function

Encoding 
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LSTM (𝑔𝜙)

(domain s+1)

Noise

…

Next Domain

Open1
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Volume1
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…

LSTM (𝑔𝜙)

(domain s)

Static Embeddings

Price features 𝒙𝒔

Static metadata 𝒄𝒔

𝐒𝐓𝑃𝑜𝑠
𝑠

𝐒𝐓𝑁𝑒𝑔
𝑠

Feature Tokenizer                      

Add

Positive view

Negative view

TKE𝑠=
[𝐶𝐿𝑆]

𝐓𝐊𝐄𝒊
𝒔

Temporal Domain Generalization

Self Supervised Learning

• We train it to minimize a triplet loss, which is a popular choice in SSL. 

• For the triplet (ST𝑝𝑜𝑠
𝑠 , ST𝑛𝑒𝑔

𝑠 , 𝐇𝒔), where CLS𝑝𝑜𝑠
𝑠 is the positive view, ST𝑛𝑒𝑔

𝑠 is negative view, and 𝐇𝒔 is the combined 

embedding's(anchor), the triplet loss is defined as follows:

ℒtriplet = RELU sim 𝐇𝒔, ST𝑝𝑜𝑠
𝑠 − sim 𝐇𝒔, ST𝑛𝑒𝑔

𝑠 + 𝛼 , 𝛼 > 0

Triplet loss

Figure 2. The proposed model (SimStock) combines self-

supervised learning framework with temporal domain

generalization for stock representations.
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Pairs Trading
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Example : Pair trading : How do I find similar stocks to pair trade? Cointegration test

Cointegration is a very interesting property that can be exploited in finance for trading.

Predicting individual stocks can be difficult, but predicting the relative movements between stocks may be easier.

Illustrative example: A drunk man is walking a dog around the street (random walk). The paths of both the man and the 

dog are unpredictable and not fixed, but the distance between them tends to revert to the mean and remains relatively 

stable. Is it TRUE?

?
Historical period 

Future period
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If we find similar stocks, we can calculate the price ratio of the two stocks for pair trading as follows.

The spread (price ratio)  𝑃𝑅𝑡 =
𝑦1𝑡

𝑦2𝑡
is mean reverting.

• This mean-reverting property of the spread can be exploited for trading and it is commonly referred to as “pairs 

trading” or “statistical arbitrage”

Procedure

• To perform pairs trading, we need to identify "similar stocks”.

• Once these similar stocks are found, the spread between the two stocks is calculated.

• Since these two stocks are similar, they are expected to follow a mean-reverting property.

Apple price data

Microsoft price data

Finding similar stocks based on historical data.
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• Illustration on how to trade the price ratio 𝑃𝑅𝑡 =
𝑦1𝑡

𝑦2𝑡
.

buy

Sell to unwind

Buy to unwind

Sell

The idea behind pairs trading is to

• short-sell the relatively overvalued 

stocks and buy the relatively 

undervalued stocks 

• unwind the position when they are 

relatively fairly valued.
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Index tracking



Application to index tracking of thematic ETFs (Motivation)
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An index is essentially a proxy for the entire universe of investments.

Characteristic Passive Funds Active Funds

Management Style
Passively tracks a specific index

(e.g., S&P500)

Actively selected holdings based on

fund manager's discretion

Costs Very low Relatively high

Investment Scope Holdings within the tracked index Varies based on fund manager's strategy

Diversification
Automatic diversification based 

on index composition
Depends on fund manager's strategy

Expected Returns Average returns of the index
Potential to outperform the index,

depending on fund manager's skill

Risks Volatility of the index
Risks associated with

fund manager's ability and strategy

Even if the costs are low, 

these expenses typically

burden individual

investors.

Motivation

• Passive funds typically track an index itself, while active funds manage assets to maximize returns. 

• However, individual investors might want to create a portfolio that suits their personal preferences, independent of the 

portfolio manager's discretion.

• We examine whether the proposed methodology enables individual investors to effectively track a specific index by 

selecting only a small number of assets.
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Portfolio Optimizations



Application to Portfolio optimization
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What distinguishes from other portfolio optimization methods

MD − RCfuture
F

MD − RCpast F
≤ 1

• Here, MD refers to the correlation matrix obtained using a specific methodology (e.g., SS, SM, GS, and TS),

While RCfuture and RCpast represent the realized correlation matrices for the future and past period, respectively.
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• SimStock Embedding (SS)         (ours)

• Historical Covariance (HC)

• The Shrinkage Method (SM)      (Ledoit et al., 2003)

• The Gerber Statistic (GS)            (Gerber et al., 2021)

• TS2VEC (TS)                                (Yue et al., 2022)

Benchmark models

We estimate the expected return 𝜇𝑡𝑖 for asset 𝑖 at time 𝑡 using the sample mean of its historical returns over a T-month 

lookback window. We set the T equal to 12 months. This setting same to Gerber et al., 2021

Introduction


